128 research outputs found

    Review of SDN-based load-balancing methods, issues, challenges, and roadmap

    Get PDF
    The development of the Internet and smart end systems, such as smartphones and portable laptops, along with the emergence of cloud computing, social networks, and the Internet of Things, has brought about new network requirements. To meet these requirements, a new architecture called software-defined network (SDN) has been introduced. However, traffic distribution in SDN has raised challenges, especially in terms of uneven load distribution impacting network performance. To address this issue, several SDN load balancing (LB) techniques have been developed to improve efficiency. This article provides an overview of SDN and its effect on load balancing, highlighting key elements and discussing various load-balancing schemes based on existing solutions and research challenges. Additionally, the article outlines performance metrics used to evaluate these algorithms and suggests possible future research directions

    Exploring Path Computation Techniques in Software-Defined Networking: A Review and Performance Evaluation of Centralized, Distributed, and Hybrid Approaches

    Get PDF
    Software-Defined Networking (SDN) is a networking paradigm that allows network administrators to dynamically manage network traffic flows and optimize network performance. One of the key benefits of SDN is the ability to compute and direct traffic along efficient paths through the network. In recent years, researchers have proposed various SDN-based path computation techniques to improve network performance and reduce congestion. This review paper provides a comprehensive overview of SDN-based path computation techniques, including both centralized and distributed approaches. We discuss the advantages and limitations of each approach and provide a critical analysis of the existing literature. In particular, we focus on recent advances in SDN-based path computation techniques, including Dynamic Shortest Path (DSP), Distributed Flow-Aware Path Computation (DFAPC), and Hybrid Path Computation (HPC). We evaluate three SDN-based path computation algorithms: centralized, distributed, and hybrid, focusing on optimal path determination for network nodes. Test scenarios with random graph simulations are used to compare their performance. The centralized algorithm employs global network knowledge, the distributed algorithm relies on local information, and the hybrid approach combines both. Experimental results demonstrate the hybrid algorithm's superiority in minimizing path costs, striking a balance between optimization and efficiency. The centralized algorithm ranks second, while the distributed algorithm incurs higher costs due to limited local knowledge. This research offers insights into efficient path computation and informs future SDN advancements. We also discuss the challenges associated with implementing SDN-based path computation techniques, including scalability, security, and interoperability. Furthermore, we highlight the potential applications of SDN-based path computation techniques in various domains, including data center networks, wireless networks, and the Internet of Things (IoT). Finally, we conclude that SDN-based path computation techniques have the potential to significantly improvement in-order to improve network performance and reduce congestion. However, further research is needed to evaluate the effectiveness of these techniques under different network conditions and traffic patterns. With the rapid growth of SDN technology, we expect to see continued development and refinement of SDN-based path computation techniques in the future

    An Optimised Shortest Path Algorithm for Network Rotuting & SDN: Improvement on Bellman-Ford Algorithm

    Get PDF
    Network routing algorithms form the backbone of data transmission in modern network architectures, with implications for efficiency, speed, and reliability. This research aims to critically investigate and compare three prominent routing algorithms: Bellman-Ford, Shortest Path Faster Algorithm (SPFA), and our novel improved variant of Bellman-Ford, the Space-efficient Cost-Balancing Bellman-Ford (SCBF). We evaluate the performance of these algorithms in terms of time and space complexity, memory utilization, and routing efficacy, within a simulated network environment. Our results indicate that while Bellman-Ford provides consistent performance, both SPFA and SCBF present improvements in specific scenarios with the SCBF showing notable enhancements in space efficiency. The innovative SCBF algorithm provides competitive performance and greater space efficiency, potentially making it a valuable contribution to the development of network routing protocols. Further research is encouraged to optimize and evaluate these algorithms in real-world network conditions. This study underscores the continuous need for algorithmic innovation in response to evolving network demands

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    Search for dark matter in events with a leptoquark and missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search is presented for dark matter in proton-proton collisions at a center-of-mass energy of root s= 13 TeV using events with at least one high transverse momentum (p(T)) muon, at least one high-p(T) jet, and large missing transverse momentum. The data were collected with the CMS detector at the CERN LHC in 2016 and 2017, and correspond to an integrated luminosity of 77.4 fb(-1). In the examined scenario, a pair of scalar leptoquarks is assumed to be produced. One leptoquark decays to a muon and a jet while the other decays to dark matter and low-p(T) standard model particles. The signature for signal events would be significant missing transverse momentum from the dark matter in conjunction with a peak at the leptoquark mass in the invariant mass distribution of the highest p(T) muon and jet. The data are observed to be consistent with the background predicted by the standard model. For the first benchmark scenario considered, dark matter masses up to 500 GeV are excluded for leptoquark masses m(LQ) approximate to 1400 GeV, and up to 300 GeV for m(LQ) approximate to 1500 GeV. For the second benchmark scenario, dark matter masses up to 600 GeV are excluded for m(LQ) approximate to 1400 GeV. (C) 2019 The Author(s). Published by Elsevier B.V.Peer reviewe

    Bose-Einstein correlations of charged hadrons in proton-proton collisions at s\sqrt s = 13 TeV

    Get PDF
    Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s \sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s \sqrt{s} = 7 TeV, as well as with theoretical predictions.[graphic not available: see fulltext]Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s=\sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s=\sqrt{s} = 7 TeV, as well as with theoretical predictions

    Azimuthal separation in nearly back-to-back jet topologies in inclusive 2-and 3-jet events in pp collisions at root s=13TeV

    Get PDF
    A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, Delta phi(12), is presented. The measurement considers events where the two leading jets are nearly collinear ("back-to-back") in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 35.9 fb(-1) are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with themeasurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region 177 degrees <Delta phi(12) <180 degrees. The 2- and 3-jet measurements are not simultaneously described by any of models.Peer reviewe

    Measurement of electroweak WZ boson production and search for new physics in WZ + two jets events in pp collisions at √s=13TeV

    Get PDF
    A measurement of WZ electroweak (EW) vector boson scattering is presented. The measurement is performed in the leptonic decay modes WZ→ℓνℓ′ℓ′, where ℓ,ℓ′=e,μ. The analysis is based on a data sample of proton-proton collisions at √s=13 TeV at the LHC collected with the CMS detector and corresponding to an integrated luminosity of 35.9 fb−1. The WZ plus two jet production cross section is measured in fiducial regions with enhanced contributions from EW production and found to be consistent with standard model predictions. The EW WZ production in association with two jets is measured with an observed (expected) significance of 2.2 (2.5) standard deviations. Constraints on charged Higgs boson production and on anomalous quartic gauge couplings in terms of dimension-eight effective field theory operators are also presented

    Measurement of the t(t)over-bar production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at root s=13TeV

    Get PDF
    A measurement of the top quark-antiquark pair production cross section sigma(t (t) over bar) in proton-proton collisions at a centre-of-mass energy of 13 TeV is presented. The data correspond to an integrated luminosity of 35.9 fb(-1), recorded by the CMS experiment at the CERN LHC in 2016. Dilepton events (e(+/-) mu(-/+), mu(+) mu(-), e(+) e(-)) are selected and the cross section is measured from a likelihood fit. For a top quark mass parameter in the simulation of m(t)(MC) = 172.5 GeV the fit yields a measured cross section sigma(t (t) over bar) = 803 +/- 2 (stat) +/- 25 (syst) +/- 20 (lumi) pb, in agreement with the expectation from the standard model calculation at next-to-next-to-leading order. A simultaneous fit of the cross section and the top quark mass parameter in the POWHEG simulation is performed. The measured value of m(t)(MC) = 172.33 +/- 0.14 (stat)(-0.72)(+0.66) (syst) GeV is in good agreement with previous measurements. The resulting cross section is used, together with the theoretical prediction, to determine the top quark mass and to extract a value of the strong coupling constant with different sets of parton distribution functions.Peer reviewe
    corecore